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Abstract--Equations are derived for the critical stress difference on thrust, normal and strike-slip faults with 
finite cohesive strength, both in homogeneous, isotropic rock, and along pre-existing strength anisotropies with 
different cohesion and coefficient of friction, subject to the limitation that the plane of anisotropy contains the 
intermediate axis of stress. The range of orientations for which sliding occurs along pre-existing planes of 
weakness rather than along a new fault is given as a function of material parameters and critical stress difference 
for the intact rock. Given the principal stress directions, the equations allow the direct calculation of the stress 
and orientation conditions for the three faulting regimes. 

INTRODUCTION where r, o are shear and normal stress on the fracture 
plane, and S,/~ are cohesive strength and coefficient of 

BRrrrLE shear failure in the upper lithosphere is usually friction (denoted as So, ~0 if referring to a strength 
described in terms of the Coulomb-Navier fracture anisotropy). As the occurrence of fracture depends only 
criterion. On the assumption that this criterion ade- on the magnitude of the shear stress, we restrict our 
quately describes faulting, it is possible to predict the attention to positive values. Compression is taken as 
orientation of fracture planes and the critical state of positive. 
stress (see e.g. Jaeger & Cook 1969, Ranalli 1987, Sibson (1974) derived expressions for the critical 
Mandl 1988). Assuming vertical orientation of one prin- stress difference on cohesionless (So = 0) pre-existing 
cipal stress, Anderson (1905, 1951) provided a model for fracture planes most favourably oriented (that is, mak- 
normal, strike-slip and thrust faulting. Sibson (1974) ing an angle 0 = ½ tan -I (1//~0)) with the axis of maxi- 
derived expressions for the critical stress difference in mum compression. If Ol > cr2 > 03 are the principal 
the three faulting regimes on planes most favourably stresses, R = 0 . 1 / a 3  the principal stress ratio, z depth, g 
oriented for faulting and with negligible cohesive gravity, p the average density of overlying rock, and 
strength. ). the pore-fluid factor (ratio of pore-fluid pressure to 

In this paper, we extend Sibson's analysis to include overburden pressure), the general conditions for sliding 
fracture planes with finite cohesive strength and arbi- on thrust, normal and strike-slip faults are, respectively, 
trary orientation with respect to the maximum stress 
axis. Fundamental to our analysis is the concept of 
strength anisotropy, i.e. a plane within the rock along (cq - a3) = (R - 1)pgz(l - 2) (2a) 
which cohesive strength and/or coefficient of friction are R - 1 
less than the corresponding quantities in intact, isotropic (ol - o3) = - - ~  pgz(1 - 2) (2b) 
rock. Strength anisotropies may be introduced by the 
presence of pre-existing fracture planes, layering, fab- R - 1 1) pgz(1 - ,~0. (2c) 
ric, etc. Although similar problems have been con- ( o r -  0 3 ) - 1  + 6 ( R -  

sidered before (e.g. Jaeger 1960, Jaeger & Cook 1969, 
Sibson 1985, Nur et al. 1986; see summary by Ivins et al. frictional properties as 
1990), to our knowledge no unified quantitative treat- 
ment in terms of the three tectonic faulting regimes is R = [ (~  + 1) t/2 + i~0] 2. (3) 
available. The present analysis is limited to the case The factor 6 (0 < 6 < 1) appearing in equation (2c) 
when the plane of anisotropy contains the intermediate comes from writing the intermediate principal stress as 
stress axis; relaxation of this condition introduces 0"2 = 0"3 + 6(O"1 -- 0.3)" The critical stress difference is 
further complexities and is at present under investi- larger for thrust faults than for strike-slip and normal 
gation, faults (in that order). 

The assumption S o = 0 restricts the applicability of 
CRITICAL STRESS DIFFERENCE ON MOST equations (2) to cohesionless pre-existina, fracture 

FAVOURABLY ORIENTED FAULTS planes. The analysis, however, can be readily extended 
to new faults in homogeneous, isotropic rock. for which 

The Coulomb-Navier shear failure criterion is S > So and/~ ~/~,. Considering the expressions for shear 
r = S +~0., (1) and normal stresses on a plane containing the 0.~-axis and 
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imes in isotropic, intact rock. Finite cohesion has the 
0.a effect of making R depth-dependent ,  which is not the case 

15 O.6 
for cohesionless material. For normal and strike-slip 

0.2 faulting, a3 < 0 at shallow depth (z -< 4S/[pg(1 - 2)] and z 
- 2S/[pg(1 - ;t)], respectively, forg = 0.75 and 6 = ½). Due 

o~ fault in homogeneous,  isotropic rock with parameters S 

a to cohesion, the critical stress difference at such depths 
can be reached only if the minimum stress is tensile, and 
the Coulomb-Navier  criterion effectively breaks down. 
This point is discussed further in the next section. 

The critical stress difference (ol - O3)N along a new 

• " " 8.~" " ~  ' b.~s " ~ . ~  " k h s  " " ~  " and/~ can be written as a function of the critical stress 
Fig. 1. Principal stress ratio R --- ot/o3 at failure as a function of the difference (0.1 -- 03)0 along a most favourably oriented 

friction coefficient, g. Numbers on curves denote values of S/o3. 
strength anisotropy with parameters So and go, by com- 

making an angle 0 with the oraxis  (see e.g. Jaeger & paring equation (6) in the two cases and solving for the 
Cook 1969, pp. 87-91), the Couiomb-Navier  criterion vertical stress. After some algebra, we obtain for thrust, 
can be written as normal and strike-slip faults, respectively, 

S + ,/./[½(01 + 0"3) - ½(0"1 - 0"3) cos  20]  (0.1 - 0.3)N = (Orl --  0.3)0,//' q- 2kt[(/t2 + 1) '/2 + P] 

= t(ol - a3) sin 20 (4) x - ~0 (8a) 

which, in terms of the principal stress ratio R, becomes 
(0.1 - 0.3)N = (0 ,  -- 0 . 3 ) J  + 2 ~ [ ( ~ 2  + 1)t/2 _ ~1 

2 S  +/~[(R0.3 + 1) - (R - 1)cos 20] = ( R -  1) sin 20. (5) ×[~  -~oS°] (8b) 

Equation (5), together with the condition that the criti- (0.1 - 0.3)N = (Ol -- 0.3)0P'~" 
cal angle is 0 = ½ tan - t  (l /p) which can be derived f r o m  2/~[(p 2 + 1) t/2 + p] 
equation (4), yields an expression for the principal stress + 1 + 26/a[(p 2 + 1) 1/2 + P0] 
ratio is Sol 

R = 2 S [ ( ~ 2 + l ) ' / z + / ~ ] + [ ~ 2 + l ) t / 2 + / ~ ] 2  (6) x ~ ~0J 
03 

where 
that reduces to equation (3) (Sibson 1974) for S = 0, 

= flO- ,//' = 'u[Q'I2 + 1)1/2 + fl] 

The variation of R with the coefficient of friction for /~o[(Po 2 + 1) 1/2 +/~0]' 
various values of the ratio between cohesive strength 
and minimum principal stress is shown in Fig. 1. The p " =  /~[~u2 + 1)'/2 - p] 
critical stress differences for thrust, normal and strike- /~o[~oZ + 1)t/2 - P ' ] '  
slip faulting along new fracture planes are formally ~,,, 1 + 26~0[~02 + 1) '/2 +Po] .  
identical to equations (2), with R given by equation (6) = 1 + 26p[(p 2 + 1) t/2 + p] 
rather than (3). The critical stress ratio can be written as 
a function of  material parameters and overburden press- The Mohr circles corresponding to these stress states are 
ure by eliminating a3 in equation (6). In the case of given in Fig. 2 for the case So = 0, p = P0. The critical 
thrust faulting, where a 3 = pgz(1 - 2), it becomes stress differences as a function of depth are shown in 

Fig. 3 fo rS  = 75 MPa, So = 5 MPa,/~0 = 0.75, 6 = ½, and 
R _ -rL, I-z2~S ) [(122+ 1)1/2+/.t] + [(p2+ 1)1/2+fl]2. (7a) two different pore-fluid pressures, corresponding to dry 

Pg rock (2 = 0) and to approximately hydrostatic (2 = 0.4) 
In the case of normal faulting, where 0" 3 = pgz(1 -- 2)/R,  water pressure. The critical stress difference for faulting 

along new planes in homogeneous,  isotropic rock is 
R =  [('u2 + 1)t/2 + P]2Pgz(1,/'2 2) 

(7b) larger than the stress difference for faulting along most 
pgz(1 - 2) - 2S [~  2 + 1) +/~] favourably oriented strength anisotropies, by an amount 

I 

In the case of strike-slip faulting, where a 3 = (constant in the particular casep = H0) which depends on 
pgz(1 - 2)/[1 + 6(R - 1)], material parameters and faulting regime. 

2(1 - 6)S[(p 2 + 1) 1/2 +/.t] CRITICAL STRESS DIFFERENCE AND 
R = + [~2 + 1)t/2 + p]2pgz( 1 _ ).). (7c) CRITICAL ANGLE FOR STRENGTH 

p g z ( 1  --  ~.) --  2S6[(/.t  2 + 1) 1/2 + / , t ]  A N I S O T R O P I E S  

Equations (7) reduce to equation (3) for a cohesionless 
pre-existing fault. Together with equations (2), they give The critical stress difference for strength anisotropies 
the critical stress difference for the three faulting reg- oriented most favourably for fracture is less than that for 



Orientation of faults 1069 

new fracture planes in isotropic rock. When a strength pared in Fig. 4 with critical stress differences for the 
anisotropy is oriented at a different angle y with respect formation of a new fault and for slippage along a most 
to the axis of maximum compression (y ~ O = ½ tan -I favourably oriented anisotropy. 
(1///)), the critical stress difference is larger than that for For a given stress regime, failure along a strength 
the most favourably oriented anisotropy; however, de- anisotropy occurs only as long as the critical shear stress 
pending on orientation, it may still be less than the is less than that for the formation of a new fault cutting 
critical stress difference for failure in isotropic rock. We the anisotropy. The orientation conditions for faulting 
first give the critical stress difference for an anisotropy along a strength anisotropy are shown in Fig. 5. The 
containing the (72-axis and making an arbitrary angle 7 angles a and fl define the limits within which sliding 
with the at-axis as a function of material parameters and occurs along the anisotropy. Outside this range, a new 
orientation; we then derive expressions defining the fault forms with orientation 0 = ½ tan -I (1//~). Ex- 
range of orientations for which sliding occurs on pre- pressions for the limiting angles for the three types of 
existing strength anisotropies rather than on newly faulting can be obtained from equation (4), solving it 
formed planes of fracture. Although both problems twice for (al + o3), once in terms of S , / /and 0, and once 
have been considered before (see e.g. Jaeger & Cook in terms of So,//0 and y. Equating the two solutions and 
1969, Sibson 1985, Nur et al. 1986), we give new explicit introducing the angle of internal friction ~o --- tan-1 (P0), 
equations for critical stress differences and orientations we have 
for each faulting regime. ~{ [ 

In the following, (al - (73)A and (O 1 -- (73)N are the //0(Ol --  O'3)N(o//2 -1"- 1) I/2 
critical stress differences for an arbitrarily oriented a = sin -~ + 2(S0//-  S//o) 
anisotropy containing the o2-axis and a new plane of //(Ol - -  G3)N(aU 2 Jr- 1) 1/2 --  ~bO 

fracture, with parameters So,//0, S and// ,  respectively. (10a) 
In a thrust faulting regime, where the vertical stress is (73, t [//0((71 _ (73)N(p2 + 1)1/2 } 
equation (4) can be solved for 03 in both cases. By :r 1 sin_ 1 [ + 2(S0/ / -  S//o). 
equating the two solutions we obtain fl = ~ -- ~ [ //((71 --  (73)NQ,/2 q. 1)V2 + q~0 

((71 -- O'3) N//0[ (~//2 + 1)I/2 __//] q. 2 ( S 0 / / _  S//0 ) (10b)  
( ( 7 1 -  (73)A = //[sin 2y+//0 (cos 2 y -  1)] 

for the minimum and maximum limiting angle, respect- (9a) 
ively. 

In a normal faulting regime, where the vertical stress is Equations (10) give the range of favourable orien- 
(71, the same procedure and solving for 01 yields tations of strength anisotropies (with respect to the 

((71_cr3)N//O[Q.t2+l)l/2+//]+2(Sop_Spo) maximum stress axis) as a function of material para- 
((71--(73)A = //[sin 2y+//o (cos 2y+l)]  meters and of critical stress difference. Although 

(9b) material parameters are assumed not to depend on 
depth, critical angles do, as the critical stress difference 

In a strike-slip faulting regime, where the vertical stress is a function of depth. They also depend on fault type. 
is o2 = os + 6((71 - 03), we obtain Figure 6 gives a and fl as a function of depth and faulting 

(O 1 -- O3)N//O[(,/./2 q" 1) 1/2 regime for two representative values of pore-fluid press- 
- / / +  2//6] + 2(So/~- S//o) ure. The orientation range for which sliding occurs along 

((71 --  (73)A = p[sin 2y +Po (cos 2 y -  1 + 26)] " pre-existing planes of weakness decreases in going from 
normal to thrust faults at any depth. For any given 

(9c) faulting regime and pore-fluid pressure, the orientation 
Equations (9) reduce to the criterion for sliding on a range decreases with increasing depth. The results of 
most favourably oriented pre-existing fault for y = 0. this analysis can be compared with the particular case of 
Critical stress differences in the thrust regime for reactivation of pre-existing cohesionless faults (Sibson 
strength anisotropies of various orientations are corn- 1985). The three-dimensional case for extensional reac- 

/ , a 

Fig. 2. Mohr circles and failure envelopes (denoted by A and B for finite cohesion and cohesionless pre-existing fault, 
respectively) in the case of (a) thrust faulting, (b) normal faulting and (c) strike-slip faulting, assuming/~ -- ~o and 6 = ~. In 
all three cases, the principal vertical stress does not change, but failure along the pre-existing fault occurs at a lower critical 

stress difference (primes denote critical stresses for pre-existing faults). 
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Fig. 3. Critical stress difference (at - a3) vs depth (z) for homogeneous, isotropic rock (at, bl, c0 and for most favourably 
oriented anisotropies (ao, b0, Co) in thrust, strike-slip and normal faulting regimes, respectively. Two cases are presented: 
(a) no pore fluid pressure; and (b) ratio of pore fluid to overburden pressure 2 = 0.4. Parameters are S = 75 MPa, So = 

5 MPa,/~ = ~0 = 0.75, ~ = ½ and p = 2700 kg m -3. 

tivation of pre-existing thrust faults has been treated by 
Ivins et al. (1990): their limiting angle can be proven to 
be equivalent to that given by equat ion (10b) for normal  
faulting (Ivins personal communicat ion 1990). 

At shallow depths, a can be negative for normal  and 
strike-slip faults: consequently,  the Cou lomb-Nav ie r  
criterion is not formally valid and 0" 3 must be tensional. 
The depth range for which this is the case is determined 
by the range in which R < 0 (see previous section), and is 
a function of cohesion and pore  fluid pressure.  For low 
cohesion (5 MPa),  it is only a few hundred metres;  for 
high cohesion (75 MPa,  which is probably  an upper  Fig. 5. Mohr circle for failure in homogeneous, isotropic rock and 
limit) it is about  5 and 10 km for strike-slip and normal  along strength anisotropy (a and b, respectively). Failure occurs along 

the strength anisotropy for orientations a -< Y -< fl with respect to the 
faults, respectively, in the absence of pore  fluid press- axis of maximum compression. 
ure. Physically, the need for tensional minimum stress in 

normal  and strike-slip faulting arises from the fact that,  normal  or a strike-slip fault to propagate  to the surface 
since the overburden pressure (al  for normal faulting, a2 under  compression,  but such faults probably originate 
for strike-slip faulting) is low at shallow depths,  the below the critical depth. 
critical stress difference cr~ - cr 3 becomes sufficiently 
large only for cr 3 < 0. This limitation does not apply to 
thrust faulting, where the overburden pressure is o" 3. In DISCUSSION 
practice, dynamic conditions at fault tips may allow a 

The results given in this note are valid for strength 
o, - o3 (upa) anisotropies containing the a2-axis (which is ei ther hori- 

o 3oo coo ooo zontal or vertical, depending on the faulting regime) and ~ " ' ~ ' ' can be summarized as follows. 
(1) Sibson's (1974) equations for the critical stress 

difference for sliding on most  favourably oriented 
_ s thrust, normal and strike-slip faults have been extended 
E to the case of finite cohesion; e.g. to the formation of .ag 

"~ new faults (equations 2 and 7). The critical stress differ- 
10. ill ence in homogeneous ,  isotropic rock relative to that 

along a strength anisotropy has been expressed in terms 
of material  parameters  (equations 8). 

is. (2) Relations between the critical stress difference 
along an arbitrarily oriented strength anisotropy and 
that for a homogeneous ,  isotropic rock have been ob- 

Fig. 4. Critical stress vs depth for thrust faulting: a--new fault in 
homogeneous, isotropic rock; b---strength anisotropy with orientation tained for the three faulting regimes, in terms of material 
y = 15" or  38* with respect  to the al-axis;  c---strength an iso t ropy with parameters  and orientation (equations 9). 
orientation y--20* or 33* with respect to the el-axis; d---strength (3) The range of orientat ions for which sliding occurs 
anisotropy with orientation y = O = ½ tan -1 (1//~o). Material para- along a pre-existing plane of weakness rather than along 
meters as for Fig. 3, with 2 = 0.4. The two values of ), in each case are 

symmetric with respect to the critical angle O. a newly formed fault has been derived as a function of 
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Fig. 6. Critical angles a and fl for failure along pre-existing anisotropies vs depth for thrust (at, fll ), strike-slip (ct 2 , ~ ) and 
normal faulting (a3, f13), in the case of (a) no pore fluid pressure and (b) ratio of pore fluid pressure to overburden pressure 

). = 0.4. Material parameters as for Fig. 3. 
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